Order of Convergence of Splitting Schemes for Both Deterministic and Stochastic Nonlinear Schrödinger Equations
نویسنده
چکیده
We first prove the second order convergence of the Strang-type splitting scheme for the nonlinear Schrödinger equation. The proof does not require commutator estimates but crucially relies on an integral representation of the scheme. It reveals the connection between Strang-type splitting and the midpoint rule. We then show that the integral representation idea can also be used to study the stochastic nonlinear Schrödinger equation with multiplicative noise of Stratonovich type. Even though the nonlinear term there is not globally Lipschitz, we prove the first order convergence of a splitting scheme of it. Both schemes preserve the mass. They are very efficient because they use explicit formulas to solve the subproblems containing the nonlinear or the nonlinear plus stochastic terms.
منابع مشابه
APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملApproximation of stochastic advection diffusion equations with finite difference scheme
In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...
متن کاملLow regularity exponential-type integrators for semilinear Schrödinger equations
— We introduce low regularity exponential-type integrators for nonlinear Schrödinger equations for which first-order convergence only requires the boundedness of one additional derivative of the solution. More precisely, we will prove first-order convergence in H for solutions in H (r > d/2) of the derived schemes. This allows us lower regularity assumptions on the data than for instance requir...
متن کاملEffects of Probability Function on the Performance of Stochastic Programming
Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...
متن کاملError Analysis of High-order Splitting Methods for Nonlinear Evolutionary Schrödinger Equations and Application to the Mctdhf Equations in Electron Dynamics
In this work, the error behaviour of high-order exponential operator splitting methods for the time integration of nonlinear evolutionary Schrödinger equations is investigated. The theoretical analysis utilises the framework of abstract evolution equations on Banach spaces and the formal calculus of Lie derivatives. The general approach is substantiated on the basis of a convergence result for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2013